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LETTER TO THE EDITOR 
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Received 15 May 1995 

AbstracL We repon a heuristic result of statistical analysis of quantum seaaering processes 
through ~msoscopic conducting cavities. We elucidate the existence of geometdcal d i m s i o N  
involved in complicated conductance RncNalions. Our numerical results show that the number 
of dimensions, which is extractable experimentally from conductance fluctuations in the lowest 
transmittable mode, is related with non-integrability in the underlying dynamical systems. 

The study of quantum transport through mesoscopic systems has become one of the ‘hot’ 
topics in recent years. An interesting problem for researchers in this field is a chaotic 
scatrering event. From the viewpoint of ‘quantum chaos’ [I], it is highly desirable to 
examine the effect of integrability or non-integrability in classical dynamics on quantum 
transport in open systems. 

A heuristic example of a mesoscopic open system is a two-dimensional conducting 
cavity whose characteristic size is a little larger than the Fermi wavelength of a scattering 
electron. The electron motion is ballistic, except for collisio& with hard walls put along 
boundaries of the system, and the shape of the cavity directly determines the nature of 
classical dynamics of the inside electron. Because of the simplicity of the system, its 
quantum mechanics attracts attention both theoretically [Z-51 and experimentally [6-9]. 

Scattering of’an electron through a mesoscopic conducting cavity is equivalent to that 
of a microwave through a waveguide with a resonant cavity. Regardless of the integrability 
of the system, the conductance or the transmission coefficient shows noisy oscillations as 
a function of an extemal parameter. Recently, Baranger et al proposed a model using a 
random S-matrix theory to describe the universal features of the conductance of chaotic 
cavities [lo, 111. The model, including and excluding a prompt componenf is based on the 
statistical ansatz for the S-matrix, assuming that the circular ensembles describe the S-matrix 
of a chaotic cavity. Their results for the ensemble average, variance, probability density of 
the conductance, and total channel-number dependence agree with a statistical analysis of 
the numerically obtained conductance of a chaotic cavity sampled along the energy axis in 
the presence and absence of a magnetic field. In contrast to closed systems [12], however, 
there is almost no analytical treatment for quantum transport through a regular cavity. 

In this letter, we adopt another approach to the problem of quantum scattering to derive 
a quantity characterizing a wide variety of transport properties. 

We start with a general situation where there is a mesoscopic conducting cavity with 
a pair of conducting leads. The system may be two or three dimensional and we do not 
necessarily restrict the shape of the cavity to be chaotic. Both of the leads ate considered 
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to have the same cross section. In classical dynamics, an electron incoming from a lead 
dwells for a while inside the cavity, bouncing within its boundaries, and then goes into a 
lead. If the electron has experienced many bounces, statistically it must be carrying some 
dynamical information about the cavity. To ensure this condition, we need to choose narrow 
leads with their orientation such that the contribution of direct trajectories to the scattering 
event is reduced. 

The quantum-mechanical counterpart of this system, in general, shows ample oscillations 
in the conductance as a function of the external parameter y ,  such as gate voltage or a 
magnetic field. This feature originates from a series of resonance overlaps. 

Assume that for a stationary state vector of incident wave with channel n-say, 
[YA)-a state vector of final wave-say, IYf)-uniformly wanders the d-dimensional unit 
hypersphere So in Hilbert space as a function of y .  This requirement is reasonable if 
the scattering process inside a cavity is intricate enough to receive a statistical nature into 
[sf). The statistical nature implys ergodicity on g, while the magnitude of d shows 
the complexity of the topological structure or richness of the information involved in the 
scattering process and &expected to be connected with the non-integrability of the system. 
IYf) is considered as an eigenvector of a given Hamilton operator H .  Because each H 
eigenvector uniformly covers SO as H moves depending on y ,  H can be described by an 
orthogonally invariant ensemble ( p  = 1) in the presence of timereversal symmetry and a 
unitary invariant ensemble (p  = 2) in the absence of such symmetry. Therefore, Iqf) E Rd 
for p = 1 and IYf) E Cd for ,3 = 2. 

For simplicity, we 'consider the case in which N ,  the ma&& number of transverse 
modes (channels) of propagating waves inside the leads, equals 1. Experimentally, this 
situation is more accessible when the Fermi energy of the electron is low enough, or the 
width of the leads is relatively small, i.e. the system is weakly open. Then the conductance 
is 

G C( T = l{Y~=,lY~5,)lz. (1) 

Here, the inner product is interpreted as a projection of the d-dimensional eigenvector 
piel) to a fixed axis lYi=l). As employed in nuclear physics [13], a joint probability 
distribution for the d components of the eigenvectors reads 

where the normalization constants are c, =~z- ' jPr (d /2 )  and cz = xdI'(d).  Simply 
integrating out all the components other than x = ("AZl lYL=l) yields the reduced densities 

P ( X )  =n-'/'r(d/2)r - (1 - xZ)(d--3)/2 (,3 = 1 ) ~  (3) 

P ( x )  = X - y d  - 1)(1 - IxIZ)d-2 

(";'I-' 
and 

(B = 2) . (4) 

After transformation of the variable x to T = lxI2, we get analytical results for the 
distribution of the transmission coefficient for N = 1 as 
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and 
P(T)  = (d - 1)(1- Tf-' (B = 2 )  . (6) 

In the l i t  of d + w, the distribution (5) goes to the so-called Porter-Thomas distribution, 
which is proposed to describe the probability distribution for the widths of resonances, in a 
nuclear reaction [14]. 

We should notice that for N = 1 the T distributions obtained by a random S-matrix 
theory for chaotic scattering [lo] correspond exactly to equations (5) with d = 3 and (6) with 
d = 2 in the presence and the absence of time-reversal symmehy, respectively. However, 
our theory applies not only to those ideal cases but to a wide variety of open systems 
including regular cavities. The parameter d is considered to serve as an index of the degree 
of complexity accompanying fluctuations of the transmission coefficient and reflects the 
nature of the underlying classical dynamics. Here, d should no longer be an integer and 
can take any non-negative real number. For N > 2, it is not so easy to get a distribution 
function of T. The difficulty is that there could be a strong correlation between components 
[ ( ~ ~ ~ ~ ~ ) } ~ , ~ = ~ . ~ , . . , ~  and hence we cannot treat each of them equally. Here we do not go 
into details in thii case. 

From equations (5) and (6), we obtain the average and variance as 

and 

1 1 ( T )  = r' 
a 
2(d -' 1) 
dz(d + 2) 

(ST') = 
(7) 

Now, we shall compare the theory with numerical results and determine the number d. 
We have computed the electric conductance for weakly open circle and stadium billiards 
(insets of figure 1) in the absence of a magnetic field. Geometries of the billiards are the 
same as those adopted in [5 ] ,  but the width W of the leads is one half of those in [SI. 
We should note that the arrangement of the leads considerably reduces a contribution of 
direct transmission of electrons to the conductance. As y ,  we choose kF, i.e. the Fermi 
wavenumber of electrons. The numerical distribution P ( T )  was obtained by sampling 2512 
values of kf in kf W / z  E [I, 2) for each billiard, and the interval 6kF of the nearest-neighbour 
values is much smaller than a width of each resonance. 

Figure 1 shows that the theoretical predictions of P ( T )  successfully describe the 
numerical results for both regular (circle) and chaotic (stadium) billiards. In each case 
the valued in (5) was extracted directly from the numerical data: d = 2.5 for the circle and 
d = 4.0 for the stadium. These values of d are not altered if we choose W twice for a width 
of the leads. This reveals a strong presumption that, though the explicit relation between 
d and the Liapunov exponent is not clear, d takes a larger value for scattering through a 
chaotic than a regular cavity; that is, d is specific to each system and displays a degree of 
non-integrability of the underlying classical dynamics. In the case of stadium billiards, d is 
greater than 3, which suggests that there exists a chaotic scattering process that has more 
complexity than is described by the circular ensemble of random S-matrix theory. In the case 
of circle billiards, the wavefunction pattern in the cavity shows radial chains of mountains 
(see the inset of figure l(a)), corresponding to the asterisk classical orbits [5]. The adiabatic 
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Figwe 1. Distribution of the uansmisrion coefficient for N = 1 in (0 )  circle and ( b )  sladium 
billiards with a pair of codducr@g leads whose orientation is the same as in [SI. The width W 
of the leads is W / a  = 0.0468, where A is the area of cavity @an. The squares are the 
numerical results; the curves are the, theoretical predictions with (a) d = 2.5 and (b)  d = 4.0. 
The numerical results are obtained by shifring a value of kF by S&. W / r  = 0.000398 within 
the full range of N = 1. Insets: the geomehy of weakly open billiards and the typical density 
distribution of elecuons with & W f x  = 1.591 55. 

change of kF causes a rotational motion of the pattern along the circular boundaries. This 
two-dimensional motion contributes the main part of the geometrical dimensions d obtained 
for the circle billiard. The remainder of d (- 0.5) might be caused by the addition of 
diffraction around openings of the cavity, as was pointed out in another statistical argument 
of the conductance fluctuations 1151. This additive dimension is also included in d for the 
stadium billiard. 

In the following we list the numerical results of the average and the variance of T, 
with the theoretical values in (7) (round brackets). For circle billiards, (T) N 0.38 (0.4) 
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and (ST’) Y 0.13 (0.11); for stadium billiards, ( T )  & 0.23 (0.25) and (ST*) Y 0.07 (0.06). 
Here, we see good agreement between theory and the numerical results for both (T) and 
(ST’), which are smaller for the stadium than for the circle billiard. Especially, (ATz) 
for the stadium billiard is suppressed to almost a half of that for the circle billiard. The 
features of ( T )  and (ST*) are attributed, respectively, to weak localization and universal 
conductance fluctuations in chaotic scattering, as is commented in [5]. 

As an external parameter y. we can choose a magnetic field, if it exists, as well as 
kF. In that case, however, the range of parametric change should be small so as not to 
essentially alter the structure of the phase space. 

In conclusion, we have shown the existence of geometrical dimensions characterizing 
scattering properties for a wide variety of mesoscopic conducting cavities. We have derived 
analytical expressions for the distribution of conductance in the lowest transmittable mode. 
The expressions include a parameter d which corresponds to the number of geometrical 
dimensions extractable from experimental data of conductance fluctuations. We propose 
that the magnitude of d is related to the non-integrability of a system and our numerical 
results for regular and chaotic open billiards exemplify this proposition. 

The auther is gateful to Professor J Burgdorfer for stimulating discussions at the very 
beginning of the work 
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